TY - JOUR
T1 - Pollutant reduction and catalytic upgrading of a Venezuelan extra-heavy crude oil with Al2O3-supported NiW catalysts
T2 - Effect of carburization, nitridation and sulfurization
AU - Villasana, Yanet
AU - Méndez, Franklin J.
AU - Luis-Luis, Miguel
AU - Brito, Joaquín L.
N1 - Publisher Copyright:
© 2018
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Alumina-supported Ni-promoted W oxides, carbides and nitrides were presulfided and employed for reducing pollutants and increasing the quality of an extra-heavy crude oil during catalytic upgrading reactions. These materials were prepared by temperature programmed reaction using reactive gases and varying the (Ni/(Ni + W)) atomic ratio from 0.00 to 1.00. Catalysts were characterized by XRD, SEM, HRTEM and N2 physisorption. In order to study the effect of the atomic ratio in the conversion of the model molecule thiophene, room pressure HDS tests were used. The catalysts with best performances during thiophene HDS were tested in the upgrading of a Venezuelan extra-heavy crude oil characterized by having high asphaltenes, S and N contents, affecting competitiveness in the global market. These results were compared with a commercial NiMo catalyst. API gravity of crude oil, CHNS elemental analysis, 13C- and 1H NMR of crude oil and asphaltenic fraction, in addition to flocculation threshold of asphaltenes, were studied in order to verify variations in physicochemical properties of oil due to catalytic upgrading and to seek evidence of pollutants reduction and improvement of quality during this process. NiW catalysts with atomic ratio (Ni/(Ni + W) = 0.50 showed remarkable performance during thiophene HDS and heavy oil hydrotreatment, improving API gravity and reducing S content, modifying chemical nature of crude oil and asphaltenes, as it was revealed by results of elemental analysis, H/C ratio, flocculation threshold, Caro/Cali and Haro/Hali ratios. However, no significant variations were found in N contents of crudes and asphaltenes revealing poor HDN performance, apparently due to Na traces from the W precursor remaining in the final NiW catalysts.
AB - Alumina-supported Ni-promoted W oxides, carbides and nitrides were presulfided and employed for reducing pollutants and increasing the quality of an extra-heavy crude oil during catalytic upgrading reactions. These materials were prepared by temperature programmed reaction using reactive gases and varying the (Ni/(Ni + W)) atomic ratio from 0.00 to 1.00. Catalysts were characterized by XRD, SEM, HRTEM and N2 physisorption. In order to study the effect of the atomic ratio in the conversion of the model molecule thiophene, room pressure HDS tests were used. The catalysts with best performances during thiophene HDS were tested in the upgrading of a Venezuelan extra-heavy crude oil characterized by having high asphaltenes, S and N contents, affecting competitiveness in the global market. These results were compared with a commercial NiMo catalyst. API gravity of crude oil, CHNS elemental analysis, 13C- and 1H NMR of crude oil and asphaltenic fraction, in addition to flocculation threshold of asphaltenes, were studied in order to verify variations in physicochemical properties of oil due to catalytic upgrading and to seek evidence of pollutants reduction and improvement of quality during this process. NiW catalysts with atomic ratio (Ni/(Ni + W) = 0.50 showed remarkable performance during thiophene HDS and heavy oil hydrotreatment, improving API gravity and reducing S content, modifying chemical nature of crude oil and asphaltenes, as it was revealed by results of elemental analysis, H/C ratio, flocculation threshold, Caro/Cali and Haro/Hali ratios. However, no significant variations were found in N contents of crudes and asphaltenes revealing poor HDN performance, apparently due to Na traces from the W precursor remaining in the final NiW catalysts.
KW - Catalysts
KW - Extra-heavy crude oil
KW - Pollutant reduction
KW - Tungsten
KW - Upgrading
UR - http://www.scopus.com/inward/record.url?scp=85051514677&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2018.08.047
DO - 10.1016/j.fuel.2018.08.047
M3 - Artículo
AN - SCOPUS:85051514677
SN - 0016-2361
VL - 235
SP - 577
EP - 588
JO - Fuel
JF - Fuel
ER -