TY - JOUR
T1 - Environmental DNA and visual encounter surveys for amphibian biomonitoring in aquatic environments of the Ecuadorian Amazon
AU - Quilumbaquin, Walter
AU - Carrera-Gonzalez, Andrea
AU - Van der Heyden, Christine
AU - Ortega-Andrade, H. Mauricio
N1 - Publisher Copyright:
Copyright 2023 Quilumbaquin et al.
PY - 2023
Y1 - 2023
N2 - Background: The development of anthropogenic activities has generated a decline in aquatic fauna populations, and amphibians have been the most affected. The decline of batrachofauna is concerning, as 41% of all species worldwide are endangered. For this reason, rapid, efficient, and non-invasive biodiversity monitoring techniques are needed, and environmental DNA (eDNA) is one such tool that has been sparsely applied in Ecuador. This technique has allowed scientists generates information on species diversity and amphibian community composition from a water sample. This study applied eDNA-based biomonitoring analyses and visual encounter surveys (VES) as inventory techniques to identify the diversity of aquatic amphibians in the Tena River micro-basin (TRMB). Methods: The experimental design was divided into three components: (1) fieldwork: all amphibians were recorded by the VES technique and water samples were collected; (2) laboratory work: DNA isolation from amphibian tissue samples and eDNA-containing filters, amplification, electrophoresis, and sequencing were performed; (3) Data analysis: a local DNA reference database was constructed, and eDNA sequence data were processed for classification, taxonomic assignment, and ecological interpretation. Results: Using both eDNA and VES, we detected 33 amphibian species (13 with eDNA only, five with VES only, and 15 with both methods). These species belonged to six amphibian families: Hylidae being the richest with 14 species (three eDNA, one VES, and 10 with both methods), followed by Strabomantidae with nine species (six eDNA, one VES, and two with both methods). All families were detected with both methods, except for the Aromobatidae, having one single record (Allobates aff. insperatus) by VES. Individually, eDNA detected 28 species and had a detection probability (DP) of 0.42 CI [0.40–0.45], while VES recorded 20 species with a DP of 0.17 CI [0.14–0.20]. Similarly, using VES, Cochranella resplendens was detected for the first time in TRMB, while with eDNA, four mountain frogs Pristimantis acerus, Pristimantis eriphus, Pristimantis mallii, and Pristimantis sp. (INABIO 15591) previously recorded at 1,518 m.a.s.l. at altitudes below 600 m.a.s.l. were detected. Conclusions: Results obtained in this study showed that eDNA-based detection had a greater capacity to detect amphibians in aquatic environments compared to VES. The combination of VES and eDNA improves the sensitivity of species detection and provides more reliable, robust, and detailed information. The latter is essential for developing conservation strategies in the Ecuadorian Amazon.
AB - Background: The development of anthropogenic activities has generated a decline in aquatic fauna populations, and amphibians have been the most affected. The decline of batrachofauna is concerning, as 41% of all species worldwide are endangered. For this reason, rapid, efficient, and non-invasive biodiversity monitoring techniques are needed, and environmental DNA (eDNA) is one such tool that has been sparsely applied in Ecuador. This technique has allowed scientists generates information on species diversity and amphibian community composition from a water sample. This study applied eDNA-based biomonitoring analyses and visual encounter surveys (VES) as inventory techniques to identify the diversity of aquatic amphibians in the Tena River micro-basin (TRMB). Methods: The experimental design was divided into three components: (1) fieldwork: all amphibians were recorded by the VES technique and water samples were collected; (2) laboratory work: DNA isolation from amphibian tissue samples and eDNA-containing filters, amplification, electrophoresis, and sequencing were performed; (3) Data analysis: a local DNA reference database was constructed, and eDNA sequence data were processed for classification, taxonomic assignment, and ecological interpretation. Results: Using both eDNA and VES, we detected 33 amphibian species (13 with eDNA only, five with VES only, and 15 with both methods). These species belonged to six amphibian families: Hylidae being the richest with 14 species (three eDNA, one VES, and 10 with both methods), followed by Strabomantidae with nine species (six eDNA, one VES, and two with both methods). All families were detected with both methods, except for the Aromobatidae, having one single record (Allobates aff. insperatus) by VES. Individually, eDNA detected 28 species and had a detection probability (DP) of 0.42 CI [0.40–0.45], while VES recorded 20 species with a DP of 0.17 CI [0.14–0.20]. Similarly, using VES, Cochranella resplendens was detected for the first time in TRMB, while with eDNA, four mountain frogs Pristimantis acerus, Pristimantis eriphus, Pristimantis mallii, and Pristimantis sp. (INABIO 15591) previously recorded at 1,518 m.a.s.l. at altitudes below 600 m.a.s.l. were detected. Conclusions: Results obtained in this study showed that eDNA-based detection had a greater capacity to detect amphibians in aquatic environments compared to VES. The combination of VES and eDNA improves the sensitivity of species detection and provides more reliable, robust, and detailed information. The latter is essential for developing conservation strategies in the Ecuadorian Amazon.
KW - Amazon region
KW - Anuran amphibians
KW - Biodiversity
KW - eDNA method
KW - Freshwater
KW - Monitoring
KW - Traditional methods
UR - http://www.scopus.com/inward/record.url?scp=85168569725&partnerID=8YFLogxK
U2 - 10.7717/peerj.15455
DO - 10.7717/peerj.15455
M3 - Artículo
AN - SCOPUS:85168569725
VL - 11
JO - PeerJ
JF - PeerJ
M1 - e15455
ER -