A two QSAR way for antidiabetic agents targeting using α-amylase and α-glucosidase inhibitors: Model parameters settings in artificial intelligence techniques

Dieguez Santana Karel, Pham The Hai, Oscar M. Rivera-Borroto, Amilkar Puris, Huong Le-Thi-Thu, Gerardo M. Casanola-Martin

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

17 Citas (Scopus)

Resumen

This work showed the use of 0-2D Dragon molecular descriptors in the prediction of α-amylase and α-glucosidase inhibitory activity. Methods: Several artificial intelligence techniques are used for obtaining quantitative structure-activity relationship (QSAR) models to discriminate active (inhibitor) compounds from inactive (non-inhibitor) ones. The machine learning methodologies such as support vector machine, artificial neural network, and k-nearest neighbor (k-NN) were employed. The k-NN technique had the best classification performances for both targets with values above 90% for the training and prediction sets, correspondingly. Results and Conclusion: These results provided a double target modeling approach for increasing the estimation of antidiabetic chemicals identification aimed by double-way workflow in virtual screenings pipelines.

Idioma originalInglés
Páginas (desde-hasta)862-868
Número de páginas7
PublicaciónLetters in Drug Design and Discovery
Volumen14
N.º8
DOI
EstadoPublicada - 1 ago. 2017
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2017 Bentham Science Publishers.

Huella

Profundice en los temas de investigación de 'A two QSAR way for antidiabetic agents targeting using α-amylase and α-glucosidase inhibitors: Model parameters settings in artificial intelligence techniques'. En conjunto forman una huella única.

Citar esto